Shear Resistance Properties of Modified Nano-SiO2/AA/AM Copolymer Oil Displacement Agent

نویسندگان

  • Nanjun Lai
  • Xin Guo
  • Ning Zhou
  • Qian Xu
  • Alireza Bahadori
چکیده

To address the problem regarding poor shear resistance of commonly employed polymers for oil displacement, modified nano-SiO2/AA/AM copolymer (HPMNS) oil displacement agents were synthesized using acrylic acid (AA), acrylamide (AM), and modified nano-SiO2 of different modification degrees as raw materials. HPMNS was characterized by means of infrared spectroscopy (IR), nuclear magnetic resonance (1H-NMR, 13C-NMR), dynamic/static light scattering, and scanning electron microscope. A comparative study of the shear resistance properties for partially hydrolyzed polyacrylamide (HPAM) and HPMNS was conducted. Compared to HPAM, the introduced hyperbranched structure endowed HPMNS with good shear resistance, which was quantified from the viscosity retention ratio of the polymer solutions. From the perspective of rheological property, HPMNS also showed great shear stability after shearing by a Mixing Speed Governor and porous media shear model. Furthermore, with a higher degree of modification, HPMNS-2 had better shear stability in terms of viscosity and rheological property than HPMNS-1. The phenomena were due to its lower hydrodynamic radius, weight-average molecular weight, and better flexibility of its molecular chains. In addition, upon the indoor displacement test, the resistance factor and residual resistance factor values of HPMNS-2 were higher than those of HPAM. This behavior is beneficial for increasing oil recovery.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental Study on the Physical and ‎Rheological Properties of Bitumen ‎Modified with Different Nano Materials ‎‎(Nano SiO2 & Nano TiO2)‎

This study is carried out to explore the effect of nano materials (SiO2 & TiO2) on the physical and rheological properties of Bitumen. To achieve this goal, Nano materials are blended in bitumen in various percentages (0.3, 0.6, 0.9 and 1.2%). The physical and rheological properties of modified binders are characterized using a penetration, softening point, kinematic viscosity and a dynamic...

متن کامل

Laboratory Evaluation and Field Application of a Type of Surface–Active Polymer Oil Displacement Agent

Aimed to obtain a type of oil displacement with both surface activity and polymer performances, this paper based on mixing initiators at low temperatures, prepared a type of anion–nonionic surface–active polymer oil displacement agent (ANSP–1) by introducing polymerizable anion–nonionic surfmer (ANS–1), acrylamide (AM) and acrylic acid (AA). Structure of ANSP–1 was measured by FTIR. Laboratory ...

متن کامل

Estimation the Fatigue Number of Stone Mastic Asphalt Mixtures Modified with Nano SiO2 and Nano TiO2

Asphalt modification/reinforcement has received considerable attention as viable solutions to enhance flexible pavement performance. This is mainly prompted by the unsatisfactory performance of traditional road materials exposed to dramatic increases and changes in traffic patterns. This paper presents the evaluation of fatigue behaviour of nano reinforced Stone Mastic Asphalt mixtures. Fatigue...

متن کامل

Effect of Molar Ratio and Resin Modification on the Protection Properties of Zinc-rich Alkali Silicate Primer

The influence of increasing the SiO2/K2O molar ratio on the electrochemical action of a waterborne potassium silicate zinc-rich coating was investigated by means of electrochemical impedance spectroscopy (EIS) and corrosion potential (Ecorr) measurements. The EIS results showed that increasing the SiO2/K2O molar ratio in the range of 3.135 to 5 by the addition of nano-SiO2 to the resins improve...

متن کامل

Free Vibration Analysis of Size-Dependent, Functionally Graded, Rectangular Nano/Micro-plates based on Modified Nonlinear Couple Stress Shear Deformation Plate Theories

In the present study, a vibration analysis of functionally graded rectangular nano-/microplates was considered based on modified nonlinear coupled stress exponential and trigonometric shear deformation plate theories. Modified coupled stress theory is a non-classical continuum mechanics theory. In this theory, a material-length scale parameter is applied to account for the effect of nanostructu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016